Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Persistent Organic Pollutants and the Association with Maternal and Infant Thyroid Homeostasis: A Multipollutant Assessment

Vivian Berg, Therese Haugdahl Nøst, Rolf Dagfinn Pettersen, Solrunn Hansen, Anna-Sofia Veyhe, Rolf Jorde, Jon Øyvind Odland, and Torkjel Manning Sandanger

Table of Contents

Table S1: Wet-weight and lipid-adjusted concentrations of OCs in serum from a subset of pregnant women in the MISA study (n= 370)

Table S2: Spearmans rank correlation coeficients

Figure S1. Hierarchical clustering of 19 POPs based on concentrations in 391 serum samples. The figure depicts the hierarchical structure obtained from the correlation between compounds (method: complete linkage). The vertical black line represents the manually selected cut-off for the number of clusters marked with boxes.

A1. Summed contaminant groups

Table S3: Linear regression coefficients^a (95% CI) for associations between maternal concentrations of POPs (ng/mL) and TSH and THs.

Table S4: Linear regression coefficients^a (95% CI) for associations between concentrations of maternal TSH and FT4 with infant concentrations of TSH.

Table S1: Wet-weight and lipid-adjusted concentrations of OCs in serum from a subset of pregnant women in the MISA study (n= 370)

	Wet-weight			Lipid-adjusted		
	(ng/g serum)			(ng/g lipids)		
Compound ^a	Median	AMb	Range	Median	AMb	Range
PCB 99	0.014	0.016	0.004, 0.075	2.12	2.41	0.44, 10.9
PCB 118	0.026	0.031	0.007, 0.228	3.99	4.63	0.94, 38.3
PCB 138	0.095	0.109	0.016, 0.670	14.2	16.3	2.10, 91.3
PCB 153	0.160	0.183	0.026, 1.247	23.8	27.5	3.39, 170
PCB 163	0.022	0.027	0.006, 0.181	3.39	3.99	0.72, 24.6
PCB 170	0.042	0.049	0.006, 0.434	6.43	7.40	0.75, 59.2
PCB 180	0.105	0.124	0.017, 1.163	15.9	18.7	3.01, 159
PCB 187	0.029	0.033	0.004, 0.168	4.30	4.93	0.81, 26.6
p,p´-DDE	0.243	0.292	0.056, 2.445	36.3	43.9	7.49, 344
НСВ	0.062	0.068	0.021, 0.317	9.35	10.2	2.81, 53.3
t-Nonachlor	0.018	0.021	0.004, 0.129	2.72	3.18	0.59, 13.8
c-Nonachlor	0.004	0.005	0.001, 0.033	0.63	0.76	0.08, 3.57

^aPCB, polychlorinated biphenyl; p,p'-DDE, dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene. Values are presented for compounds with detection frequencies >80%; levels below the LOD were set to LOD/ $\sqrt{2}$.

^bAM = Arithmetic mean

 Table S2: Spearmans rank correlation coeficients

	PCB 99	PCB 118	PCB 138	PCB 163	PCB 153	PCB 170	PCB 180	PCB 187	p,p- DDE	НСВ	t- Nonachlor	c- Nonachlor	PFHxS	PFOA	PFHpS	PFOS	PFNA	PFDA
DGD110		110	136	103	133	170	100	107	DDE	псь	Nonaciioi	Nonaciioi	TTIAS	TTOA	TTIPS	1103	ITNA	TTDA
PCB118	.76																	
PCB138	.89	0.79																
PCB163	.66	0.66	0.75															
PCB153	.84	0.79	0.95	0.83														
PCB170	.65	0.62	0.78	0.82	0.87													
PCB180	0.67	0.69	0.83	0.82	0.93	0.91												
PCB187	0.78	0.76	0.89	0.81	0.95	0.86	0.93											
p,p'-DDE	0.77	0.68	0.8	0.6	0.76	0.61	0.62	0.7										
НСВ	0.77	0.73	0.77	0.7	0.77	0.65	0.65	0.7	0.64									
t-Nonachlor	0.77	0.75	0.79	0.75	0.82	0.71	0.76	0.82	0.62	0.77								
c-Nonachlor	0.69	0.67	0.7	0.66	0.71	0.61	0.65	0.71	0.54	0.66	0.9							
PFHxS	0.35	0.39	0.36	0.32	0.32	0.27	0.24	0.25	0.27	0.39	0.36	0.34						
PFOA	0.25	0.28	0.29	0.28	0.26	0.23	0.17	0.18	0.26	0.34	0.19	0.13	0.53					
PFHpS	0.31	0.33	0.29	0.23	0.25	0.16	0.17	0.2	0.22	0.33	0.31	0.3	0.5	0.46				
PFOS	0.4	0.42	0.37	0.36	0.35	0.27	0.25	0.27	0.29	0.45	0.41	0.39	0.63	0.65	0.68			
PFNA	0.32	0.43	0.37	0.39	0.38	0.34	0.34	0.34	0.29	0.42	0.37	0.33	0.49	0.64	0.45	0.61		
PFDA	0.35	0.43	0.39	0.37	0.41	0.38	0.39	0.39	0.3	0.39	0.41	0.41	0.45	0.47	0.41	0.58	0.75	
PFUnDA	0.39	0.45	0.42	0.4	0.45	0.39	0.44	0.46	0.32	0.4	0.49	0.5	0.34	0.19	0.28	0.44	0.55	0.75

Figure S1. Hierarchical clustering of 19 POPs based on concentrations in 391 serum samples. The figure depicts the hierarchical structure obtained from the correlation between compounds (method: complete linkage). The vertical black line represents the manually selected cut-off for the number of clusters marked with boxes.

A1. Summed contaminant groups

Based on the hierarchical clustering analysis, groups were established by addition of concentrations; i) Nonachlor (*cis*-nonachlor and *trans*-nonachlor); ii) PCB 99-153 (PCB 99, 118, 138, 153) and v) PCB 163-187 (PCB 138, 153, 163, 170, 180, 187). The remaining compounds were kept as single compounds.

Table S3: Linear regression coefficients^a (95% CI) for associations between maternal concentrations of POPs (ng/mL) and TSH and THs.

	n	Model 1: T3 ^b	\mathbb{R}^2	Model 2: T4 ^c	\mathbb{R}^2	Model 4: TSH ^d	\mathbb{R}^2	Model 3: FT4 ^e	\mathbb{R}^2	Model 4: FT3 ^e	\mathbb{R}^2
PCB 99-153 ^f											
Quartile 1	91	Reference		Reference		Reference		-		-	
Quartile 2	91	-0.002 (-0.02, 0.016)		0.003 (-0.015, 0.02)		0.04 (-0.03, 0.11)		-		-	
Quartile 3	91	-0.02 (-0.04, 0.001)		-0.01 (-0.03, 0.01)		0.03 (-0.04, 0.10)		-		-	
Quartile 4	91	-0.03 (-0.05, -0.01)*	30	-0.02 (-0.04, -0.01)*	7	0.08 (0.01, 0.16)	8	-	-	-	-
НСВ											
Quartile 1	92	Reference		Reference		-		-		-	
Quartile 2	92	-0.01 (-0.03, 0.007)		-0.004 (-0.02, 0.01)		-		-		-	
Quartile 3	93	-0.02 (-0.04, -0,003)*		-0.006 (-0.02, 0.01)		-		-		-	
Quartile 4	92	-0.02 (-0.05, -0,01)**	31	-0.03 (-0.05, -0,01)*	8	-	-	-	-	-	-
Nonachlors ^g											
Quartile 1	92	Reference		Reference		Reference		-		-	
Quartile 2	92	-0.01 (-0,03, 0.008)		-0.002 (-0.02, 0,02)		0.09 (0.024, 0.163)**		-		-	
Quartile 3	93	-0.02 (-0.04, 0.003)		-0.01 (-0.03, 0.01)		0.07 (0.002, 0.145)*		-		-	
Quartile 4	92	-0.03 (-0.05, -0 01)*	30	-0.02 (-0.04, -0.01)*	7	0.01 (0.010, 0.159)*	9	-	-	-	-
PCB 163-187 ^h											
Quartile 1	92	Reference		Reference		Reference		Reference		-	
Quartile 2	92	-0.02 (-0.03, -0.002)*		-0.01 (-0.02,0.01)		0.04 (-0.03, 0.11)		-0.002 (-0.016, 0.012)		-	
Quartile 3	93	-0.02 (-0.04, -0.001)*		-0.01 (-0.02,0.01)		0.04 (-0.03, 0.11)		0.001 (-0.019, 0.009)		-	
Quartile 4	92	-0.04 (-0.06, -0,02)**	31	-0.03 (-0.05, -0.06)*	8	0.10 (0.03, 0.17)**	7	-0.02 (-0.030, -0.001)*	26	-	-
PFOS											
Quartile 1	94	-		-		Reference		-		-	
Quartile 2	87	-		-		0.04 (-0.031, 0.114)		-		-	
Quartile 3	95	-		-		0.08 (0.006, 0.154)*		-		-	

Quartile 4	94	-	-	-	-	0.10 (0.016, 0.169)*	8	-	-	-	-
PFUnDA											
Quartile 1	91	-		-		-		-		Reference	
Quartile 2	93	-		-		-		-		-0.01 (-0.024, 0.004)	
Quartile 3	93	-		-		-		-		-0.01 (-0.024, 0.004)	
Quartile 4	93	-	-	-	-	-	-	-	-	-0.02 (-0.033, -0.003)*	14
PFDA											
Quartile 1	92	Reference		-		-		-		-	
Quartile 2	93	-0.01 (-0.030. 0.007)		-		-		-		-	
Quartile 3	93	-0.01 (-0.032, 0.005)		-		-		-		-	
Quartile 4	92	-0.02 (-0.044, -0.005)*	30	-	-	-	-		-	-	

^{*}p\le 0.05, **p\le 0.01 calculated for the change in concentrations compared to the reference quartile.

 $^{^{}a}$ Regression coefficient β , i.e. change in concentrations (100% x β) across quartiles with the lowest quartile as reference group.

^bThe model is adjusted for pregnancy related change vector, parity, age, BMI and physical activity

^cThe model is adjusted for pregnancy related change vector, age and physical activity

^dThe model is adjusted for t-uptake and parity

^eThe model is adjusted for pregnancy related change vector, BMI and age

^fIncludes PCB 99,118,138 and 153

gIncludes trans- and cis-nonachlor

^hIncludes PCB 163, 170, 180 and 187

R² presented as %

Table S4: Linear regression coefficients^a (95% CI) for associations between concentrations of maternal TSH and FT4 with infant concentrations of TSH.

Predictors	n	Infant TSH mlU/L ^b
Model 1: Maternal TSH mlU/L ^a		
Quartile 1: 0.06-1.09	92	Reference
Quartile 2: 1.11-1.55	94	0.03 (-0.063, 0.131)
Quartile 3: 1.56-2.16	90	-0.03 (-0.134, 0.065)
Quartile 4: 2.19-10.17	92	0.10 (0.001, 0.201)*
Model 2: Maternal FT4 pmol/L		
Quartile 1: 10-13	104	Reference
Quartile 2: 13.3-14	80	-0.08 (-0.176, 0.007)
Quartile 3: 14-16	103	-0.05 (-0.147, 0.049)
Quartile 4: 16-25	81	-0.11 (-0.204, -0.014)*

^{*}p<0.05, calculated for the change in concentrations compared to the reference quartile.

^aRegression coefficient β , i.e. change in concentrations (100% x β) across quartiles with the lowest quartile as reference group.

^bThe models are adjusted for maternal total lipid, infant age at sampling, birthweight, gender and gestational length.